Imanuel's website

Imanuel's Pelog JI 1 ⋄ A new just tuning ⋄

Description

These "just" scales are based on equal temperament. All intervals are aimed to be within a schisma (32805/32768, ~1.95 cents) of the approximated interval from equal temperament.

I wrote a program that evaluates fractional approximations to the intervals by repeatedly incrementing the numerator of the fraction. The denominator is increased accordingly. These approximations are assigned a "distance" (or, inverse score) by dividing the larger of the two intervals (either the approximated equal temperament interval, or the approximation itself) by the smaller one. The program for a specific interval will stop when a sufficiently good approximation is found (I chose a distance below a schisma to be "sufficiently good").

One other factor however is also introduced, which often times makes these distances larger than that schisma in the end: the interval encompassing both the harmonics and the subharmonics (the product of the numerator and denominator) should be smaller than 8 octaves (2^8 = 256).

For getting the prime-limit scales, I could simply skip the approximations where either the numerator or the denominator had prime factors above the designated value. For example a 19-limit by definition has no prime factors above 19 in the numerator or denominator.

Try it now / Get Scala file

Scala file (.scl) Try it online

Scala file contents

! Imanuel's Pelog JI 1.scl
!
A new just tuning, more info at http://imanuelhab.mooo.com/functional-web-language/fwd-to-html.php?q=the_strangest_scales%2Fpelog-new-just-tuning-imanuel.fwd
 9
!
 14/13
 7/6
 5/4
 15/11
 19/13
 19/12
 12/7
 13/7
 2/1

Prime factors and frequencies

Frequencies (Hz)

D♭ E♭ A♭
C C♯ D♯ E F G G♯ A B C
261.6 281.8 305.2 327 356.8 382.4 414.2 448.5 485.9 523.3

Logarithmic frequency values (cents)

D♭ E♭ A♭
C C♯ D♯ E F G G♯ A B C
0 96.2 200.2 289.7 402.7 492.7 596.7 699.8 803.8 900
0 100 200 300 400 500 600 700 800 900
0 -3.8 0.2 -10.3 2.7 -7.3 -3.3 -0.2 3.8 0

Logarithmic frequency values (cents, for 12-ET with octave equivalence)

D♭ E♭ A♭
C C♯ D♯ E F G G♯ A B C
0 128.3 266.9 386.3 537 657 795.6 933.1 1071.7 1200
0 100 300 400 500 700 800 900 1100 1200
0 28.3 -33.1 -13.7 37 -43 -4.4 33.1 -28.3 0
C C♯ D♯ E F G G♯ A B C
D♭ E♭ A♭

Numerators

D♭ E♭ A♭
C C♯ D♯ E F G G♯ A B C
1 14 7 5 15 19 19 12 13 2
7 7 5 5 19 19 3 13 2
2 3 2
2

Denominators

D♭ E♭ A♭
C C♯ D♯ E F G G♯ A B C
1 13 6 4 11 13 12 7 7 1
13 3 2 11 13 3 7 7
2 2 2
2

Intervals

1 14 7 5 15 19 19 12 13 2
1 13 6 4 11 13 12 7 7 1
19 247 72 52 22 28 28 35 210 19
13 168 49 35 15 19 19 24 143 13

Shift intervals in table


Numerators (circle of fifths)

D♭ A♭ E♭
C G C♯ G♯ D♯ A E B F C
1 19 28 19 14 48 10 104 240 32
19 7 19 7 3 5 13 5 2
2 2 2 2 2 3 2
2 2 2 2 2
2 2 2 2
2 2 2
2

Denominators (circle of fifths)

D♭ A♭ E♭
C G C♯ G♯ D♯ A E B F C
1 13 13 6 3 7 1 7 11 1
13 13 3 3 7 7 11
2

Intervals

1 19 28 19 14 48 10 104 240 32
1 13 13 6 3 7 1 7 11 1
19 28 247 28 72 35 52 210 22 19
13 19 168 19 49 24 35 143 15 208

Shift intervals in table by fifths


Numerators (circle of fourths)

E♭ A♭ D♭
C F B E A D♯ G♯ C♯ G C
1 15 13 5 24 14 19 112 152 16
5 13 5 3 7 19 7 19 2
3 2 2 2 2 2
2 2 2 2
2 2 2 2
2

Denominators (circle of fourths)

E♭ A♭ D♭
C F B E A D♯ G♯ C♯ G C
1 11 7 2 7 3 3 13 13 1
11 7 2 7 3 3 13 13

Intervals

1 15 13 5 24 14 19 112 152 16
1 11 7 2 7 3 3 13 13 1
15 143 35 48 49 19 336 19 26 15
11 105 26 35 36 14 247 14 19 11

Shift intervals in table by fourths



Copyright © 2024 Imanuel Habekotté

Page rendered on 26-12-2024 at 12:23:32, it took 7.814602 seconds